Wavelets: Where Vision, Math & DSP Meet

- a quick introduction

Jackie (Jianhong) Shen
School of Math, University of Minnesota, Minneapolis
www.math.umn.edu/~jhshen

Knowledge learned from my former Ph.D. advisor

Gilbert Strang

Department of Math, MIT, Cambridge

www-math.mit.edu/~gs

Overview

- > Seeking the simple codes of complex images
- > Representation: learning from our own vision
- > Image zooming, and zooming neurons
- ➤ Multiresolution framework of Mallat and Meyer
- > Two key equations for Shape Function & Wavelet
- > The fundamental theorem of Multiresolution
- > 2-channel orthogonal & biorthogonal filter banks
- > Applications
- > (Chris and Michelle's talks are next)

Behind complexity is simplicity

Examples:

- The universal path to chaos is *period doubling*.
- (Biology) ACTG encode the complexity of life.
- (Computer) "0" and "1" (or spin up and down for *Quantum Computers*) are the digital "seeds."
- (Physics) The complexity of the material world is based on the limited number of basic particles.
- (Fractals) Simple algebraic rules hidden in complex shapes.

Conclusion:

Hidden in a complex phenomenon, is its simple evolutionary codes or building blocks (or the *atoms*).

The complexity of image signals

Images:

- Large dynamic range of scales.
- Often no good regularity as functions.
- Rich variations in intensity and color.
- Complex shapes and boundaries of "objects."
- Noisy or blurred (astronomical or medical image).
- "The lost dimension" --- range is lost but depth is still important for understanding meaningfully 2-D images.

Searching for the hidden code of images (I)

• Fractals: by *Iterated Function Systems*.

• Pattern formation: via Differential Equations.

Searching for the hidden code of images (II)

Statistical modeling (Geman's, Mumford, Zhu, Yuille...):

- Image prior models (edge, regularity,...).
- Image data models (noise, blurring,...).
- Image disocclusion models.
- Parametric methods & lattice models.
- Non-parametric methods & learning via the maximum entropy principle.

A representation, not an interpretation...

- Benoit Mandelbrot (interview on France-Culture): "The world around us is very complicated. The tools at our disposal to <u>describe</u> it are very weak."
- Yves Meyer (1993):
 - "Wavelets, whether they are ..., will not help us to explain scientific facts, but they serve to describe the reality around us, whether or not it is scientific."
- Thus, to represent a signal, is to find a good way to <u>describe</u> it, not to <u>explain</u> the underlying physical process that generates it.

General images

• Mostly no global multi-scale self-similarity.

Contain both man-made and natural "objects"

• Mostly no simple and universal underlying physical or biological processes that generate the patterns in a general image.

Fourier was born too early...

<u>Claim</u>: Harmonic waves are **bad** *vision neurons*... *Proof*.

– A typical Fourier neuron is $\phi = \exp(iax)$.

– To "see" a simple bright spot $\delta(x)$ in the visual field,

all such neurons have to respond to it (!) since

$$\langle \delta, \phi \rangle \equiv 1$$
.

Efficiency of representation

• <u>David Field</u> (Cornell U, Vision psychologist):

"To discriminate between objects, an effective transform (representation) encodes each image using the *smallest* possible number of neurons, chosen from a large pool."

Asking our own "headtop"...

• Psychologists show that visual neurons are *spatially* organized, and each behaves like a small sensor (receptor) that can respond strongly to spatial changes such as edge contours of objects (*Fields, 1990*).

The Marr's edge neuron model

- Detection of edge contours is a critical ability of human vision (Marr, 1982).
- Marr and Hildreth (1980) proposed a model for human detection of edges at all scales. This is Marr's *Theory of Zero-Crossings*:

$$G_{\sigma} = \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right),$$

$$\Psi_{\sigma} = \Delta G_{\sigma} = -\frac{2}{\sigma^2} \left(1 - \frac{x^2 + y^2}{2\sigma^2} \right) \exp\left(-\frac{x^2 + y^2}{2\sigma^2} \right),$$

Edge occurs in *I* where $(\Psi_{\sigma} * I) = 0$.

Haar's average-difference coding

- Marr's *edge detector* is to use second derivative to *locate* the maxima of the first derivative (which the edge contours pass through).
- *Haar Basis* (1909) encodes (modern language :-) the edges into image representation via the first derivative operator (i.e. moving difference):

$$(...x_{2n},x_{2n+1},...)\leftrightarrow (...a_n=\frac{x_{2n}+x_{2n+1}}{2},d_n=\frac{x_{2n}-x_{2n+1}}{2},...)$$

A good representation should respect edges

- Edge is so important a feature in image and vision analysis.
- A good image representation (or basis) should be capable of providing the edge information easily.
- Edge is a <u>local</u> feature. Local operators like differentiation must be incorporated into the representation, as in the coding by the Haar basis.
- Wavelets improve Haar, while respecting the above edge representation principle.

What to expect from a good representation?

- Mathematically *rigorous* (i.e. a clean and stable analysis and synthesis program exists. FT & IFT...).
- Having an independent *digital formulation*, and computationally *fast* (FFT, FWT...).
- Capturing the *characteristics* of the input signals, and thus many existing processing operators (e.g. image indexing, image searching ...) are *directly* permitted on such representation.

Understanding images mathematically

- Let Σ denote the collection of "all" images. What is the mathematical structure of Σ ? Suppose that $f \in \Sigma$ is captured by a camera. Then Σ should be invariant under
 - Euclidean motion of the camera:

$$f(x) \rightarrow f(Qx+a), \ Q \in O(2), a \in \mathbb{R}^2.$$

– Flashing:

$$f(x) \to \mu f(x), \qquad \mu \in R^+,$$

or, more generally, a morphological transform ---

$$f(x) \rightarrow h(f(x)), \quad h: R \rightarrow R, h' > 0.$$

- Zooming:

$$f(x) \to f(\lambda x), \quad \lambda \in R^+.$$

Zooming in 2-D

What is zooming?

- Zooming (aiming) center: a.
- Zooming scale: *h*.
- Zoom into the *h*-neighborhood at *a* in a given image *I*:

$$I_{a,h}(x) = I(a+h\cdot x), \quad x \in \Omega$$
, the visual field;
$$I_{a,h}\left(\frac{y-a}{h}\right) = I(y) \cdot 1_{\Omega}\left(\frac{y-a}{h}\right), \text{ the aperture.}$$

• Zooming is one of the most fundamental and characteristic operators for image analysis and visual communication. It reflects the *multi-scale nature* of images and vision.

The zooming neuron representation

- The zooming "neuron": $\psi(x)$.
- aiming (a) and zooming-in-or-out (h):

$$\psi_{a,h}(x) = \frac{1}{\sqrt{h}}\psi(\frac{x-a}{h}).$$

• Generating response (or neuron firing):

$$I_{a,h} = \langle I, \psi_{a,h} \rangle = \int I(x) \psi_{a,h}(x) dx.$$

• The zooming space: $(a, h) \in R \times R^+$.

A "good" neuron must be differentiating

- A *good* neuron should fire *strongly* to abrupt changes, and *weakly* to smooth domains (for purposes like efficient memory, object recognition, and so on).
- That means, for an uninteresting image I=c, the responses $I_{a,h}$ are all zeros:

$$I_{a,h} = \langle I, \psi_{a,h} \rangle \equiv 0.$$

This is the "differentiating" property of the neuron, just like "d/dx":

$$\int_{R} \psi (x) = 0.$$

The continuous wavelet representation

Definition:

A differentiating zooming neuron $\psi(x)$ is said to be a (continuous) wavelet. Representing a given image I(x) by all the neuron responses $I_{a,h} = \langle I, \psi_{a,h} \rangle$ is the corresponding wavelet representation.

Questions:

- Does there exist a "best" wavelet $\psi(x)$?
- Does a wavelet representation allow perfect reconstruction?

Synthesizing a wavelet representation

- Goal: to recover *perfectly* an image signal I from its wavelet representation I(a,h).
- (Continuous) Wavelet synthesis:

$$I(a,h) = \langle I, \psi_{a,h} \rangle = \langle \hat{I}, \psi_{a,h} \rangle$$

Then \hat{I} can be perfectly recovered from J via

$$\hat{I}(\xi) = \int_{[0,\infty)} J(\xi,h) \hat{\psi}(h\xi) / h \, dh \,, \quad \int_0^\infty |\hat{\psi}(h)|^2 / h \, dh = 1 \,.$$

The admissibility condition & differentiation

• The <u>admissibility condition</u> of a continuous wavelet:

$$\int_0^\infty |\dot{\psi}(h)|^2 / h \ dh < \infty.$$

• A differentiating zooming neuron satisfies the AC since:

$$\hat{\psi}(0) = \int_{R} \psi(x) dx = 0$$
, and $\hat{\psi}(h) = ch + o(h)$.

- Examples:
 - The Marr wavelet (Mexican-hat): second derivative of Gaussian.
 - The Shannon wavelet: $\psi(x) = 2\operatorname{sinc}(2x) \operatorname{sinc}(x)$.

The discrete set of zooming neurons

• Make a log-linear discretization to the scale parameter h:

$$j \to j = -\log_2 h_j = 0, \pm 1, \pm 2, \cdots$$

• Make a *scale-adaptive* discretization of the zooming centers:

at scale
$$h_{j} = 2^{-j} : k \rightarrow a_{k} = kh_{j} = k / 2^{j},$$

 $k = 0, \pm 1, \pm 2, \cdots.$

• The discrete set of zooming neurons:

$$\psi_{j,k}(x) = \frac{1}{\sqrt{h_j}} \psi(\frac{x-kh_j}{h_j}) = 2^{j/2} \psi(2^j x - k).$$

The discrete wavelet representation

• The wavelet coefficients:

$$d_{j,k} = \left\langle I, \psi_{j,k} \right\rangle = 2^{j/2} \int_{R} I(x) \psi(2^{j} x - k) dx.$$

$$d_{j,k} = I_{2^{-j}k} 2^{-j}, \text{ in terms of the continuous WT.}$$

Questions:

- Does the set of all wavelet coefficients still encode the complete information of each input image *I* ? Or equivalently,
- Is the set of wavelets $\{\psi_{j,k}(x):j,k\in Z\}$ a basis?

We don't know. But let's check out some examples....

Example 1: Haar wavelet

• The Haar "aperture" function is

$$\psi^{\text{harr}}(x) = 1_{0 \le x < 1/2}(x) - 1_{1/2 \le x < 1}(x).$$

• Haar's theorem (1905):

All Haar wavelets $\psi_{j,k}^{\text{haar}}$, together with the constant function 1, consist into an **orthonormal basis** for the Hilbert space of all square integrable functions on [0, 1].

Haar wavelets (cont'd)

• Haar's mother wavelet:

$$\psi^{\text{Harr}}(x) = 1_{0 \le x < 1/2}(x) - 1_{1/2 \le x < 1}(x).$$

- Why orthonormal basis?
 - Orthonormality is easy to see.
 - Completeness is due to the fact that:

All dyadically piecewise constant functions are dense in $L_2(0,1)$.

Haar wavelets (cont'd)

• Three Haar wavelets and the mean (constant) encode *all* the information of the piecewise constant approximation (or, the analog-to-digital transition).

Example 2: The Shannon wavelets

• The Shannon's "aperture" function is:

$$\psi^{\text{Shannon}}(x) = 2 \operatorname{sinc}(2x) - \operatorname{sinc}(x).$$

• Theorem:

 $\{\psi_{j,k}^{\text{Shannon}}(x): j,k\in Z\}$ is an orthonormal basis of $L_2(\mathbb{R})$.

Shannon wavelets (cont'd)

How to visualize the orthonormal basis?
 Answer: go to the Fourier domain!

- According to Shannon:
 - All signals bandlimited to $(-\pi, \pi)$ can be represented by $\operatorname{sinc}(x-n)$...
 - those bandlimited to $(-2\pi, \pi)$ U $(\pi, 2\pi)$, by $\psi(x-n)$.
 - those bandlimited to $(-4\pi, 2\pi)$ U $(2\pi, 4\pi)$, by $\psi_{1,n} = \sqrt{2}\psi(2x n)$.
 - **–** ...

Shannon wavelets (cont'd)

According to Shannon:

- All signals bandlimited to $(-\pi, \pi)$ can be represented by $\operatorname{sinc}(x-n)$...
- those bandlimited to $(-2\pi, -\pi)$ U $(\pi, 2\pi)$, by $\psi(x-n)$.
- those bandlimited to $(-4\pi, -2\pi)$ U($2\pi, 4\pi$), by $\psi_{1,n} = \sqrt{2}\psi(2x-n)$.

Partition of the time-frequency plane

- Heisenberg's uncertainty principle requires that each TF atom must have: $\Delta t \cdot \Delta x \ge 2\pi$.
- Thus, for an *optimal* localization, the "life time" of an atom must influence its scale or frequency content.

School of Math, UMN, jhshen@math

Multiresolution analysis

Mallat and Meyer (1986):

An (orthogonal) multiresolution of $L_2(R)$ is a chain of closed subspaces indexed by all integers:

$$\cdots V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \cdots$$

subject to the following three conditions:

- (completeness)
$$\overline{\lim_{n\to\infty} V_n} = L_2(R), \qquad \lim_{n\to-\infty} V_n = \{0\}.$$

- (scale similarity)
$$f(x) \in V_n \Leftrightarrow f(2x) \in V_{n+1}$$
.

- (translation seed) V_0 has an <u>orthonormal</u> basis consisting of all integral translates of a single function $\phi(x)$: $\{\phi(x-n): n \in Z\}$.

Equations for designing MRA

• The refinement (dilation) equation for the "seed" function:

$$\phi(x) = 2\sum_{n} h_n \phi(2x - n)$$
, for a suitable set of h_n 's.

This seed function is called: scaling function, shape fcn...

Where is the wavelet?

Let W_0 denote the orthogonal complement of V_0 in V_1 . Then W_0 is also orthogonally spanned by the integer translates of a single translation seed $\psi(x)$, the wavelet!

$$\psi(x) = 2\sum_{n} g_{n}\phi(2x-n)$$
, for a suitable set of g_{n} 's.

Wavelets representation

Theorem:

 $\{\psi_{j,k} = 2^{j/2}\psi(2^jx-k): j,k \in Z\}$ is an orthonormal basis for L_2 .

Wavelets representation of a signal:

$$I \sim I_{j} \in V_{j} \xrightarrow{\qquad \qquad } I_{j-1} \in V_{j-1} \xrightarrow{\qquad \qquad } I_{0} \in V_{0}.$$

$$\downarrow d_{j-1} \in W_{j-1} \qquad \qquad \downarrow d_{j-2} \cdots \qquad \qquad \downarrow d_{0} \in W_{0}.$$

$$I_{j} = d_{j-1} + d_{j-2} + \cdots + d_{0} + I_{0}.$$

An example of wavelet decomposition

One level wavelet decomposition of a 1-D signal

2-channel filter bank: Analysis bank

- H' is the <u>lowpass</u> filter and G' is the highpass filter.
- \downarrow 2 is the <u>downsampling</u> operator: $(1\ 3\ 4\ 6\ 5)$ \longrightarrow $(1\ 4\ 5)$.

lowpass channel

highpass channel

2-channel filter bank: Synthesis bank

- H is the <u>lowpass</u> filter and G is the highpass filter.
- \uparrow 2 is the <u>upsampling</u> operator: $(1 \ 4 \ 5) \longrightarrow (1 \ 0 \ 4 \ 0 \ 5)$.

lowpass channel

highpass channel

A biorthogonal filter bank

Biorthogonal (or perfect) filter bank: if y=x for all inputs x.

An orthogonal filter bank

Orthogonal filter bank: if it is biorthogonal, and both analysis filters H' and G' are the time reversals of the synthesis filters H & G: $H=(1, 2, 3) \longrightarrow H'=(3, 2, 1)$.

The fundamental theorem of MRA

• An *orthogonal* Mallat-Meyer MRA corresponds to an *orthogonal* filter bank with the synthesis filters:

$$H = (h_n : n \in Z), \quad G = (g_n : n \in Z).$$

where, the h's and g's are the 2-scale *connection* coefficients in the dialation and wavelet equations:

$$\phi(x) = 2\sum_{n} h_{n}\phi(2x - n), \quad \psi(x) = 2\sum_{n} g_{n}\phi(2x - n).$$

And, the *multiresolution* wavelet decomposition of f corresponds to the *iteration* of the analysis bank with the ϕ -coefficients of f as the input digital data.

The fundamental theorem (cont'd)

$$I_{j} \in V_{j} \qquad \qquad I_{j-1} \in V_{j-1} \qquad \qquad I_{0} \in V_{0} \qquad \qquad I_{0}$$

Suppose j=2, and
$$I_2 = \sum_{k} c_2(k) \phi_{2,k}(x)$$
.

Some major applications

- FBI fingerprints.
- JPEG2000.
- Image indexing and image search engines (for databank).
- Image modeling (such as MRF on the wavelets domain).
- Image denoising and restorations.
- Texture analysis.
- Direct processing tools on the wavelets domain.
- Algorithm speeding up based on multi-resolution rep..
- Time series analysis.
- A lot of others ...

New Directions of Wavelets

• Random Wavelets Expansion (RWE) by Mumford-Gidas [2001], to model the scale-invariance of general images.

- Geometric Wavelets:
 - D. Donoho's school: ridgelets, wedgelets, curvelets.
 - S. Mallat [2001]: beamlets.
 - T. Chan & H.-M. Zhou [2000], A. Cohen [2002]: integrate computational PDE techniques such as the ENO scheme into wavelet transforms, to better capture shocks (discontinuities).

